Сила тяжести: формула, определение. Закон всемирного тяготения. Сила тяжести. Ускорение свободного падения Зависимость силы тяжести от высоты

Закон всемирного тяготения открыл Ньютон в 1687 году при изучении движения спутника Луны вокруг Земли. Английский физик четко сформулировал постулат, характеризующий силы притяжения. Кроме того, анализируя законы Кеплера, Ньютон вычислил, что силы притяжения должны существовать не только на нашей планете, но и в космосе.

История вопроса

Закон всемирного тяготения родился не спонтанно. Издревле люди изучали небосвод, главным образом для составления сельскохозяйственных календарей, вычисления важных дат, религиозных праздников. Наблюдения указывали, что в центре «мира» находится Светило (Солнце), вокруг которого по орбитам вращаются небесные тела. Впоследствии догматы церкви не позволяли так считать, и люди утратили накапливавшиеся тысячелетиями знания.

В 16 веке, до изобретения телескопов, появилась плеяда астрономов, взглянувших на небосвод по-научному, отбросив запреты церкви. Т. Браге, многие годы наблюдая за космосом, с особой тщательностью систематизировал перемещения планет. Эти высокоточные данные помогли И. Кеплеру впоследствии открыть три своих закона.

К моменту открытия (1667 г.) Исааком Ньютоном закона тяготения в астрономии окончательно утвердилась гелиоцентрическая система мира Н. Коперника. Согласно ей, каждая из планет системы вращается вокруг Светила по орбитам, которые с приближением, достаточным для многих расчетов, можно считать круговыми. В начале XVII в. И. Кеплер, анализируя работы Т. Браге, установил кинематические законы, характеризующие движения планет. Открытие стало фундаментом для выяснения динамики движения планет, то есть сил, которые определяют именно такой вид их движения.

Описание взаимодействия

В отличие от короткопериодных слабых и сильных взаимодействий, гравитация и электромагнитные поля имеют свойства дальнего действия: их влияние проявляется на гигантских расстояниях. На механические явления в макромире воздействуют 2 силы: электромагнитная и гравитационная. Воздействие планет на спутники, полет брошенного или запущенного предмета, плавание тела в жидкости - в каждом из этих явлений действуют гравитационные силы. Эти объекты притягиваются планетой, тяготеют к ней, отсюда и название «закон всемирного тяготения».

Доказано, что между физическими телами безусловно действует сила взаимного притяжения. Такие явления, как падение объектов на Землю, вращение Луны, планет вокруг Солнца, происходящие под действием сил всемирного притяжения, называют гравитационными.

Закон всемирного тяготения: формула

Всемирное тяготение формулируется следующим образом: два любых материальных объекта друг к другу притягиваются с определенной силой. Величина этой силы прямо пропорциональна произведению масс этих объектов и обратно пропорциональна квадрату расстояния между ними:

В формуле m1 и m2 являются массами исследуемых материальных объектов; r - расстояние, определяемое между центрами масс расчетных объектов; G - постоянная гравитационная величина, выражающая силу, с которой осуществляется взаимное притяжение двух объектов массой по 1 кг каждый, располагающихся между собой на расстоянии 1 м.

От чего зависит сила притяжения

Закон всемирного тяготения по-разному действует, в зависимости от региона. Так как сила притяжения зависит от значений широты на определенной местности, то аналогично ускорение свободного падения обладает разными значениями в разных местах. Максимальное значение сила тяжести и, соответственно, ускорение свободного падения имеют на полюсах Земли - сила тяжести в этих точках равна силе притяжения. Минимальными значения будут на экваторе.

Земной шар слегка сплюснут, его полярный радиус меньше экваториального примерно на 21,5 км. Однако эта зависимость менее существенная по сравнению с суточным вращением Земли. Расчеты показывают, что из-за сплюснутости Земли на экваторе величина ускорения свободного падения чуть меньше его значения на полюсе на 0,18%, а через суточное вращение - на 0,34%.

Впрочем, в одном и том же месте Земли угол между векторами направления мал, поэтому расхождение между силой притяжения и силой тяжести незначительно, и ею в расчетах можно пренебречь. То есть можно считать, что модули этих сил одинаковы - ускорение свободного падения около поверхности Земли везде одинаковое и равно приблизительно 9,8 м/с².

Вывод

Исаак Ньютон был ученым, который совершил научную революцию, полностью перестроил принципы динамики и на их основе создал научную картину мира. Его открытие повлияло на развитие науки, на создание материальной и духовной культуры. На судьбу Ньютона выпала задача пересмотреть результаты представления о мире. В XVII в. ученым завершена грандиозная работа построения фундамента новой науки - физики.

Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со сто-роны Земли действует сила, направленная к Земле. Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, направленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения.

Ньютон был первым, кто сначала догадался, а потом и строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии»:

«Брошенный горизонтально камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, то он упадет дальше» (рис. 1).

Продолжая эти рассуждения, Ньютон приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты».

Сейчас нам стало настолько привычным движение спутников вокруг Земли, что разъяснять мысль Ньютона подробнее нет необходимости.

Итак, по мнению Ньютона, движение Луны вокруг Земли или планет вокруг Солнца – это тоже свободное падение, но только падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит?

Зависимость силы тяготения от массы тел

Галилей доказал, что при свободном падении Земля сообщает всем телам в данном месте одно и то же ускорение независимо от их массы. Но ускорение по второму закону Ньютона обратно пропорционально массе\. Как же объяснить, что ускорение, сообщаемое телу силой притяжения Земли, одинаково для всех тел? Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. В этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а ускорение, которое равно \(a = \frac {F}{m}\), останется неизменным. Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует.

Но во взаимном притяжении участвуют по меньшей мере два тела. На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела. Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс:

\(F \sim m_1 \cdot m_2\)

Зависимость силы тяготения от расстояния между телами

Из опыта хорошо известно, что ускорение свободного падения равно 9,8 м/с 2 и оно одинаково для тел, падающих с высоты 1, 10 и 100 м, т. е. не зависит от расстояния между телом и Землей. Это как будто бы означает, что и сила от расстояния не зависит. Но Ньютон считал, что отсчитывать расстояния надо не от поверхности, а от центра Земли. Но радиус Земли 6400 км. Понятно, что несколько десятков, сотен или даже тысяч метров над поверхностью Земли не могут заметно изменить значение ускорения свободного падения.

Чтобы выяснить, как влияет расстояние между телами на силу их вза-имного притяжения, нужно было бы узнать, каково ускорение тел, удаленных от Земли на достаточно большие расстояния. Однако наблюдать и изучать свободное падение тела с высоты в тысячи километров над Землей трудно. Но сама природа пришла здесь на помощь и дала возможность определить ускорение тела, движущегося по окружности вокруг Земли и обладающего поэтому центростремительным ускорением, вызванным, разумеется, той же силой притяжения к Земле. Таким телом является естественный спутник Земли – Луна. Если бы сила притяжения между Землей и Луной не зависела от расстояния между ними, то центростремительное ускорение Луны было бы таким же, как ускорение тела, свободно падающего близ поверхности Земли. В действительности же центростремительное ускорение Луны равно 0,0027 м/с 2 .

Докажем это . Обращение Луны вокруг Земли происходит под действием силы тяготения между ними. Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле \(a = \frac {4 \pi^2 \cdot R}{T^2}\), где R – радиус лунной орбиты, равный примерно 60 радиусам Земли, Т ≈ 27 сут 7 ч 43 мин ≈ 2,4∙10 6 с – период обращения Луны вокруг Земли. Учитывая, что радиус Земли R з ≈ 6,4∙10 6 м, получим, что центростремительное ускорение Луны равно:

\(a = \frac {4 \pi^2 \cdot 60 \cdot 6,4 \cdot 10^6}{(2,4 \cdot 10^6)^2} \approx 0,0027\) м/с 2 .

Найденное значение ускорения меньше ускорения свободного падения тел у поверхности Земли (9,8 м/с 2) приблизительно в 3600 = 60 2 раз.

Таким образом, увеличение расстояния между телом и Землей в 60 раз привело к уменьшению ускорения, сообщаемого земным притяжением, а следовательно, и самой силы притяжения в 60 2 раз.

Отсюда вытекает важный вывод: ускорение, которое сообщает телам сила притяжения к Земле, убывает обратно пропорционально квадрату расстояния до центра Земли

\(F \sim \frac {1}{R^2}\).

Закон всемирного тяготения

В 1667 г. Ньютон окончательно сформулировал закон всемирного тяготения:

\(F = G \cdot \frac {m_1 \cdot m_2}{R^2}.\quad (1)\)

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними .

Коэффициент пропорциональности G называется гравитационной постоянной .

Закон всемирного тяготения справедлив только для таких тел, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. Иначе говоря, он справедлив только для материальных точек . При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 2). Подобного рода силы называются центральными.

Для нахождения силы тяготения, действующей на данное тело со сто-роны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно разделяют на столь малые элементы, чтобы каждый из них можно было считать точечным. Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. 3). Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.

Есть, однако, один практически важный случай, когда формула (1) применима к протяженным телам. Можно доказать, что сферические тела, плотность которых зависит только от расстояний до их центров, при расстояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (1). В этом случае R – это расстояние между центрами шаров.

И наконец, так как размеры падающих на Землю тел много меньше размеров Земли, то эти тела можно рассматривать как точечные. Тогда под R в формуле (1) следует понимать расстояние от данного тела до центра Земли.

Между всеми телами действуют силы взаимного притяжения, зависящие от самих тел (их масс) и от расстояния между ними.

Физический смысл гравитационной постоянной

Из формулы (1) находим

\(G = F \cdot \frac {R^2}{m_1 \cdot m_2}\).

Отсюда следует, что если расстояние между телами численно равно единице (R = 1 м) и массы взаимодействующих тел тоже равны единице (m 1 = m 2 = 1 кг), то гравитационная постоянная численно равна модулю силы F . Таким образом (физический смысл ),

гравитационная постоянная численно равна модулю силы тяготения, действующей на тело массой 1 кг со стороны другого тела такой же массы при расстоянии между телами, равном 1 м .

В СИ гравитационная постоянная выражается в

.

Опыт Кавендиша

Значение гравитационной постоянной G может быть найдено только опытным путем. Для этого надо измерить модуль силы тяготения F , действующей на тело массой m 1 со стороны тела массой m 2 при известном расстоянии R между телами.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. английским физиком Г. Кавендишем с помощью прибора, называемого крутильными весами. Схематично крутильные весы показаны на рисунке 4.

Кавендиш закрепил два маленьких свинцовых шара (диаметром 5 см и массой m 1 = 775 г каждый) на противоположных концах двухметрового стержня. Стержень был подвешен на тонкой проволоке. Для этой проволоки предварительно определялись силы упругости, возникающие в ней при закручивании на различные углы. Два больших свинцовых шара (диаметром 20 см и массой m 2 = 49,5 кг) можно было близко подводить к маленьким шарам. Силы притяжения со стороны больших шаров заставляли маленькие шары перемещаться к ним, при этом натянутая проволока немного закручивалась. Степень закручивания была мерой силы, действующей между шарами. Угол закручивания проволоки (или поворота стержня с малыми шарами) оказался столь малым, что его пришлось измерять с помощью оптической трубы. Результат, полученный Кавендишем, только на 1% отличается от значения гравитационной постоянной, принятого сегодня:

G ≈ 6,67∙10 -11 (Н∙м 2)/кг 2

Таким образом, силы притяжения двух тел массой по 1 кг каждое, находящихся на расстоянии 1 м друг от друга, по модулям равны всего лишь 6,67∙10 -11 Н. Это очень малая сила. Только в том случае, когда взаимодействуют тела огромной массы (или по крайней мере масса одного из тел велика), сила тяготения становится большой. Например, Земля притягивает Луну с силой F ≈ 2∙10 20 Н.

Гравитационные силы – самые «слабые» из всех сил природы. Это связано с тем, что гравитационная постоянная мала. Но при больших массах космических тел силы всемирного тяготения становятся очень большими. Эти силы удерживают все планеты возле Солнца.

Значение закона всемирного тяготения

Закон всемирного тяготения лежит в основе небесной механики – науки о движении планет. С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории. Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов.

Возмущения в движении планет . Планеты не движутся строго по законам Кеплера. Законы Кеплера точно соблюдались бы для движения данной планеты лишь в том случае, когда вокруг Солнца обращалась бы одна эта планета. Но в Солнечной системе планет много, все они притягиваются как Солнцем, так и друг другом. Поэтому возникают возмущения движения планет. В Солнечной системе возмущения невелики, потому что притяжение планеты Солнцем гораздо сильнее притяжения другими планетами. При вычислении видимого положения планет приходится учитывать возмущения. При запуске искусственных небесных тел и при расчете их траекторий пользуются приближенной теорией движения небесных тел – теорией возмущений.

Открытие Нептуна . Одним из ярких примеров триумфа закона все-мирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.

Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адаме и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе. Адаме раньше закончил вычисления, но наблюдатели, которым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немецкому астроному Галле место, где надо искать неизвестную планету. В первый же вечер, 28 сентября 1846 г., Галле, направив телескоп на указанное место, обнаружил новую планету. Ее назвали Нептуном.

Таким же образом 14 марта 1930 г. была открыта планета Плутон. Оба открытия, как говорят, были сделаны «на кончике пера».

При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.

Силы всемирного тяготения – самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела.

Литература

  1. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Просвещение, 1992. – 191 с.
  2. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.

11 февраля 2016 г. было объявлено об экспериментальном открытии гравитационных волн, существование которых предугадал в прошлом веке Альберт Эйнштейн. Гравитационная волна — это распространение переменного гравитационного поля в пространстве. Данная волна излучается подвижной массой и может оторваться от своего источника (как отрывается электромагнитная волна от заряженной частицы, движущейся с ускорением). Считают, что изучение гравитационных волн поможет пролить свет на историю Вселенной и не только...

Говорят, что И. Ньютон сам рассказывал, как он открыл закон всемирного тяготения. Как-то ученый гулял по саду и увидел на дневном небе Луну. В этот момент на его глазах с ветки упало яблоко. Именно тогда Ньютон подумал о том, что, возможно, это одна и та же сила заставляет яблоко падать на землю, а Луну — оставаться на околоземной орбите.

Изучаем гравитационное взаимодействие

Все без исключения физические тела во Вселенной притягиваются друг к другу — это явление называют всемирным тяготением или гравитацией (от лат. gravitas — вес).

гравитационное взаимодействие — взаимодействие, присущее всем телам во Вселенной и проявляющееся в их взаимном притяжении друг к другу.

Например, сейчас вы и учебник взаимодействуете силами гравитационного притяжения. Но в данном случае силы настолько малы, что их не зафиксируют даже самые точные приборы. Силы гравитационного притяжения становятся заметными только тогда, когда хотя бы одно из тел имеет массу, сравнимую с массой небесных тел (звезд, планет, их спутников и т. п.).

Гравитационное взаимодействие осуществляется благодаря особому виду материи — гравитационному полю, которое существует вокруг любого тела — звезды, планеты, человека, книги, молекулы, атома и т. д.

Открываем закон всемирного тяготения

Первые высказывания о тяготении встречаются у античных авторов. Так, древнегреческий мыслитель Плутарх (ок. 46 — ок. 127 гг.) писал: «Луна упала бы на Землю как камень, чуть только исчезла бы сила ее полета».

В XVI-XVII вв. ученые Европы снова обратились к теории существования взаимного притяжения тел. Толчком послужили прежде всего открытия в астрономии: Николай Коперник (рис. 33.1) доказал, что в центре Солнечной

системы находится Солнце, а все планеты вращаются вокруг него; Иоганн Кеплер(1571-1630) открыл законы движения планет вокруг Солнца;

Галилео Галилей создал телескоп и с его помощью увидел спутники Юпитера.

Но почему планеты вращаются вокруг Солнца, а спутники вокруг планет, какая сила удерживает космические тела на орбитах? Одним из первых это понял английский ученый Роберт Гук(1635-1703). Он писал: «Все небесные тела имеют притяжение к своему центру, вследствие чего они не только притягивают собственные части и не дают им разлетаться, но и притягивают также все другие небесные тела, находящиеся в сфере их действия». Именно Р. Гук предположил, что сила притяжения двух тел прямо пропорциональна массам этих тел и обратно пропорциональна квадрату расстояния между ними. Однако доказал это И. Ньютон, который и сформулировал закон всемирного тяготения:

Рис. 33.2. Согласно третьему закону Ньютона силы гравитационного притяжения тел равны по модулю и противоположны по направлению

Рис. 33.3. Генри Кавендиш (1731-1810) — английский физик и химик. Определил гравитационную постоянную, массу и среднюю плотность Земли; за несколько лет до Ш. Кулона открыл закон взаимодействия электрических зарядов

Между любыми двумя телами действуют силы гравитационного притяжения (рис. 33.2), которые прямо пропорциональны произведению масс этих тел и обратно пропорциональны квадрату расстояния между ними:

Математическую запись какого закона вам напоминает запись закона всемирного тяготения? Запишите формулу.

Гравитационную постоянную впервые измерил английский ученый Генри Кавендиш (рис. 33.3) в 1798 г. с помощью крутильных весов:

Гравитационная постоянная численно равна силе, с которой две материальные точки массой1 кг каждая взаимодействуют на расстоянии1 м друг от друга(если m 1 = m 2 = 1 кг, а r = 1м, то F = 6,67 10 -11 Н).

Закон всемирного тяготения позволяет описать большое количество явлений, в том числе движение естественных и искусственных тел в Солнечной системе, движение двойных звезд, звездных скоплений и др. В астрономии, опираясь на этот закон, вычисляют массы небесных тел, выясняют характер их движения, строение, эволюцию.

дает точный результат в следующих случаях:


Выясняем границы применимости закона всемирного тяготения

Рис. 33.5. Сила тяжести направлена вертикально вниз и приложена к точке, которую называют центром тяжести тела. Центр тяжести однородного симметричного тела расположен в центре симметрии; может быть и вне тела (в)

Рис. 33.6. Расстояние r от центра Земли до тела равно сумме радиуса Земли R З и высоты h, на которой находится тело

1) если размеры тел пренебрежимо малы по сравнению с расстоянием между ними (тела можно считать материальными точками);

2) если оба тела имеют шарообразную форму и сферическое распределение вещества;

3) если одно из тел — шар, размеры и масса которого значительно больше, чем размеры и масса другого тела, находящегося на поверхности этого шара или на расстоянии от него.

Обратите внимание! Закон всемирного тяготения, как и большинство законов классической механики, применяют только в случаях, когда относительная скорость движения тел намного меньше скорости распространения света. В общем случае тяготение описывается общей теорией относительности, созданной А. Эйнштейном.

Почему можно воспользоваться законом всемирного тяготения, вычисляя силу притяжения Земли к Солнцу? Луны к Земле? человека к Земле (см. рис. 33.4)?

определяем силу тяжести

Сила тяжести Р тяж — сила, с которой Земля (или другое астрономическое тело) притягивает к себе тела, находящиеся на ее поверхности или вблизи нее (рис. 33.5)*.

Согласно закону всемирного тяготения модуль силы тяжести ^ тяж, действующей на тело вблизи Земли, можно вычислить по формуле:

где G — гравитационная постоянная; m — масса тела; М З — масса Земли; r = R З + h — расстояние от центра Земли до тела (рис. 33.6).

Что такое ускорение свободного падения

Падение тел впервые исследовал Галилео Галилей, который экспериментально доказал: причина того, что легкие тела падают с меньшим ускорением, — сопротивление воздуха; при отсутствии воздуха все тела — независимо от их массы, объема, формы — падают на Землю с одинаковым ускорением. Более точные эксперименты провел Исаак Ньютон, изготовив для этого специальное устройство — трубку Ньютона. Эксперименты показали: в вакууме свинцовая дробинка, пробка и птичье перо падали одинаково (а), в воздухе перо безнадежно отставало (б).

Движение тела только под действием силы тяжести называют свободным падением.

При свободном падении сила тяжести, действующая на тело, никакой силой не скомпенсирована, поэтому согласно второму закону Ньютона тело движется с ускорением. Это ускорение называют ускорением свободного падения и обозначают символом g:

Как и сила тяжести, ускорение свободного падения всегда направлено вертикально вниз

независимо от того, в каком направлении движется тело. Из формулы g=-^тяж/^·:

Итак, имеем две формулы для определения модуля силы тяжести:

Отсюда получим формулу для вычисления ускорения свободного падения:

Анализ последней формулы показывает:

1. Ускорение свободного падения не зависит от массы тела (доказал Г Галилей).

2. Ускорение свободного падения уменьшается при увеличении высоты h, на которой находится тело над поверхностью Земли, причем заметное изменение происходит, если h составляет десятки и сотни километров (на высоте h = 100 км ускорение свободного падения уменьшится всего лишь на 0,3 м/с 2).

3. Если тело находится на поверхности Земли (h = 0) или на высоте нескольких километров

Рис. 33.7. Модуль ускорения свободного падения на экваторе немного меньше, чем на полюсе g < g^

Отметим, что из-за вращения Земли, а также из-за того, что форма Земли — геоид (экваториальный радиус Земли больше полярного на 21 км), ускорение свободного падения зависит от географической широты местности (рис. 33.7).

Из курса физики 7 класса вы знаете, что g ~ 10 Н/кг. Докажите, что 1 Н/кг = 1 м/с 2 .

Подводим итоги

Взаимодействие, присущее всем телам во Вселенной и проявляющееся в их взаимном притяжении друг к другу, называют гравитационным. Гравитационное взаимодействие осуществляется с помощью особого вида материи — гравитационного поля.

Закон всемирного тяготения: между любыми двумя телами действует сила гравитационного притяжения, которая прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния

гравитационная постоянная.

Силу, с которой Земля притягивает к себе тела, находящиеся на ее поверхности или вблизи нее, называют силой тяжести. Сила тяжести направлена вертикально вниз, приложена к центру тяжести тела, а ее модуль

вычисляют по формулам:

между ними:

Движение тел только под действием силы тяжести называют свободным падением, а ускорение, с которым при этом движутся тела, — ускорением свободного падения g. Это ускорение всегда направлено вертикально вниз и не зависит от массы тела. На поверхности Земли g ~ 9,8 м/с 2 .

Контрольные вопросы

1. Какое взаимодействие называют гравитационным? Приведите примеры.

2. Сформулируйте и запишите закон всемирного тяготения. 3. Каков физический смысл гравитационной постоянной? Чему она равна? 4. Каковы границы применимости закона всемирного тяготения? 5. Дайте определение силы тяжести. По каким формулам ее вычисляют и как она направлена? 6. От каких факторов зависит ускорение свободного падения?


Упражнение № 33

1. Определите массу тела, если на поверхности Луны на него действует сила тяжести 7,52 Н. Какая сила тяжести будет действовать на это тело на поверхности Земли? Ускорение свободного падения на Луне — 1,6 м/с 2 .

2. Можно ли, воспользовавшись законом всемирного тяготения, рассчитать силу притяжения двух океанских лайнеров (см. рисунок)?

3. Как изменится сила гравитационного притяжения между двумя шариками, если один из них заменить другим, вдвое большей массы?

4. Измерив гравитационную постоянную, Г. Кавендиш смог определить массу Земли, после чего гордо заявил: «Я взвесил Землю».

Определите массу Земли, зная ее радиус (R З « 6400 км), ускорение свободного падения на ее поверхности и гравитационную постоянную.

5. Определите ускорение свободного падения на высоте, которая равна трем радиусам Земли.

6. Определите гравитационное ускорение на поверхности планеты, масса и радиус которой в два раза больше, чем масса и радиус Земли.

7. Воспользуйтесь дополнительными источниками информации и узнайте об ускорении свободного падения на поверхности планет Солнечной системы. На какой планете вы будете меньше весить? Будет ли при этом меньше ваша масса?

8. Уравнение движения тела: χ = -5ί + 5ί 2 . Каковы начальная скорость и ускорение движения тела? Через какой интервал времени тело изменит направление своего движения?

Экспериментальное задание

Центр тяжести тела неправильной геометрической формы можно определить, подвешивая его поочередно за любые две крайние точки (см. рисунок). Вырежьте из плотной бумаги или картона фигурку произвольной формы и определите ее центр тяжести. Поместите фигурку центром тяжести на острие иглы или стержня авторучки. Убедитесь, что фигурка находится в равновесии. Запишите план проведения эксперимента.

Физика и техника в Украине

одесский национальный политехнический университет, основанный в 1918 г., сегодня — одно из ведущих технических учебных заведений Украины.

С Одесской политехникой связаны имена таких ученых, как лауреат Нобелевской премии И. Е. Тамм, академики Л. И. Мандельштам, Н. Д. Папалекси, А. Г. Амелин, М. А. Аганин, профессоры К. С. Завриев, Ч. Д. Кларк, И. Ю. Тимченко и др.

В Одесском политехническом университете учились и работали выдающиеся инженеры, конструкторы, ученые, изобретатели: В. И. Атрощенко, Г. К. Боресков, А. А. Эннан, А. Э. Нудельман, А. Ф. Дащенко, Л. И. Гутенмахер, Г. К. Суслов, В. В. Ажогин, Л. И. Панов, Б. С. Пристер, А. В. Усов, А. В. Якимов и др.

Основные направления научных исследований и подготовки кадров Одесской политехники — машиностроение, энергетика, химические технологии, компьютерно-интегрированные системы управления, радиоэлектроника, электромеханика, информационные технологии, телекоммуникации.

С 2010 г. ректор университета — Геннадий Александрович Оборский, доктор технических наук, профессор, известный специалист в области динамики и надежности технологических систем.

Это материал учебника

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле. Ньютон обобщил законы движения небесных тел и выяснил, что сила равна:

,

Где и - массы взаимодействующих тел, - расстояние между ними, - коэффициент пропорциональности, который называется гравитационной постоянной. Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами. В результате закон всемирного тяготения звучит так: между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки .

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если , , то , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м. Численное значение: . Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения. В соответствии со вторым законом Ньютона , следовательно, . Сила тяжести всегда направлена к центру Земли. В зависимости от высоты над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно .

В технике и быту широко используется понятие веса тела. Весом тела называют силу, с которой тело давит на опору или подвес в результате гравитационного притяжения к планете (рис. 5). Вес тела обозначается . Единица веса - ньютон (Н). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

Рассмотрим случай, когда тело вместе с опорой не движется. В этом случае сила реакции опоры, а следовательно, и нее тела равен силе тяжести (рис. 6):

В случае движения тела вертикально вверх вместе с опорой с ускорением по второму закону Ньютона можно записать (рис. 7, а).

В проекции на ось : , отсюда .

Следовательно, при движении вертикально вверх с ускорением вес тела увеличивается и находится по формуле .

Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой . Действие перегрузки испытывают на себе космонавты как при взлете космической ракеты, так и при торможении корабля при входе в плотные слои атмосферы. Испытывают перегрузки и летчики при вы-полнении фигур высшего пилотажа, и водители автомобилей при резком торможении.

Если тело движется вниз по вертикали, то с помощью аналогичных рассуждений получаем ; m g - N = m a ; ; , т. е. вес при движении по вертикали с ускорением будет меньше силы тяжести (рис. 7, б).

Если тело свободно падает, то в этом случае .

Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

Темы кодификатора ЕГЭ: силы в механике, закон всемирного тяготения, сила тяжести, ускорение свободного падения, вес тела, невесомость, искусственные спутники Земли.

Любые два тела притягиваются друг к другу - по той лишь одной причине, что они имеют массу. Эта сила притяжения называется силой тяготения или гравитационной силой .

Закон всемирного тяготения.

Гравитационное взаимодействие любых двух тел во Вселенной подчиняется достаточно простому закону.

Закон всемирного тяготения. Две материальные точки массами и притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними:

(1)

Коэффициент пропорциональности называется гравитационной постоянной . Это фундаментальная константа, и её численное значение было определено на основе эксперимента Генри Кавендиша:

Порядок величины гравитационной постоянной объясняет, почему мы не замечаем взаимного притяжения окружающих нас предметов: гравитационные силы оказываются слишком малыми при небольших массах тел. Мы наблюдаем лишь притяжение предметов к Земле, масса которой примерно кг.

Формула (1) , будучи справедливой для материальных точек, перестаёт быть верной, если размерами тел пренебречь нельзя. Имеются, однако, два важных для практики исключения.

1. Формула (1) справедлива, если тела являются однородными шарами. Тогда - расстояние между их центрами. Сила притяжения направлена вдоль прямой, соединяющей центры шаров.

2. Формула (1) справедлива, если одно из тел - однородный шар, а другое - материальная точка, находящаяся вне шара. Тогда сстояние от точки до центра шара. Сила притяжения направлена вдоль прямой, соединяющей точку с центром шара.

Второй случай особенно важен, так как позволяет применять формулу (1) для силы притяжения тела (например, искусственного спутника) к планете.

Сила тяжести.

Предположим, что тело находится вблизи некоторой планеты. Сила тяжести - это сила гравитационного притяжения, действующая на тело со стороны планеты. В подавляющем большинстве случаев сила тяжести - это сила притяжения к Земле.

Пусть тело массы лежит на поверхности Земли. На тело действует сила тяжести , где - ускорение свободного падения вблизи поверхности Земли. С другой стороны, считая Землю однородным шаром, можно выразить силу тяжести по закону всемирного тяготения:

где - масса Земли, км - радиус Земли. Отсюда получаем формулу для ускорения свободного падения на поверхности Земли:

. (2)

Эта же формула, разумеется, позволяет найти ускорение свободного падения на поверхности любой планеты массы и радиуса .

Если тело находится на высоте над поверхностью планеты, то для силы тяжести получаем:

Здесь - ускорение свободного падения на высоте :

В последнем равенстве мы воспользовались соотношением

которое следует из формулы (2) .

Вес тела. Невесомость.

Рассмотрим тело, находящееся в поле силы тяжести. Предположим, что есть опора или подвес, препятствующие свободному падению тела. Вес тела - это сила, с которой тело действует на опору или подвес. Подчеркнём, что вес приложен не к телу, а к опоре (подвесу).

На рис. 1 изображено тело на опоре. Со стороны Земли на тело действует сила тяжести (в случае однородного тела простой формы сила тяжести приложена в центре симметрии тела). Со стороны опоры на тело действует сила упругости (так называемая реакция опоры). На опору со стороны тела действует сила - вес тела. По третьему закону Ньютона силы и равны по модулю и противоположны по направлению.

Предположим, что тело покоится. Тогда равнодействующая сил, приложенных к телу, равна нулю. Имеем:

С учётом равенства получаем . Стало быть, если тело покоится, то его вес равен по модулю силе тяжести.

Задача. Тело массы вместе с опорой движется с ускорением , направленным вертикально вверх. Найти вес тела.

Решение. Направим ось вертикально вверх (рис. 2 ).

Запишем второй закон Ньютона:

Перейдём к проекциям на ось :

Отсюда . Следовательно, вес тела

Как видим, вес тела больше силы тяжести. Такое состояние называется перегрузкой.

Задача. Тело массы вместе с опорой движется с ускорением , направленным вертикально вниз. Найти вес тела.

Решение. Направим ось вертикально вниз (рис. 3 ).

Схема решения та же. Начинаем со второго закона Ньютона:

Переходим к проекциям на ось :

Отсюда c. Следовательно, вес тела

В данном случае вес тела меньше силы тяжести. При (свободное падение тела с опорой) вес тела обращается в нуль. Это - состояние
невесомости , при котором тело вообще не давит на опору.

Искусственные спутники.

Для того, чтобы искусственный спутник мог совершать орбитальное движение вокруг планеты, ему нужно сообщить определённую скорость. Найдём скорость кругового движения спутника на высоте над поверхностью планеты. Масса планеты , её радиус (рис. 4 )


Рис. 4. Спутник на круговой орбите.

Спутник будет двигаться под действием единственной силы - силы всемирного тяготения, направленной к центру планеты. Туда же направлено и ускорение спутника - центростремительное ускорение

Обозначив через массу спутника, запишем второй закон Ньютона в проекции на ось, направленной к центру планеты: , или

Отсюда получаем выражение для скорости:

Первая космическая скорость - это максимальная скорость кругового движения спутника, отвечающая высоте . Для первой космической скорости имеем

или, с учётом формулы ( 2 ),

Для Земли приближённо имеем.

Математика